The tactile speed aftereffect depends on the speed of adapting motion across the skin rather than other spatiotemporal features.

نویسندگان

  • Sarah McIntyre
  • Tatjana Seizova-Cajic
  • Alex O Holcombe
چکیده

After prolonged exposure to a surface moving across the skin, this felt movement appears slower, a phenomenon known as the tactile speed aftereffect (tSAE). We asked which feature of the adapting motion drives the tSAE: speed, the spacing between texture elements, or the frequency with which they cross the skin. After adapting to a ridged moving surface with one hand, participants compared the speed of test stimuli on adapted and unadapted hands. We used surfaces with different spatial periods (SPs; 3, 6, 12 mm) that produced adapting motion with different combinations of adapting speed (20, 40, 80 mm/s) and temporal frequency (TF; 3.4, 6.7, 13.4 ridges/s). The primary determinant of tSAE magnitude was speed of the adapting motion, not SP or TF. This suggests that adaptation occurs centrally, after speed has been computed from SP and TF, and/or that it reflects a speed cue independent of those features in the first place (e.g., indentation force). In a second experiment, we investigated the properties of the neural code for speed. Speed tuning predicts that adaptation should be greatest for speeds at or near the adapting speed. However, the tSAE was always stronger when the adapting stimulus was faster (242 mm/s) than the test (30-143 mm/s) compared with when the adapting and test speeds were matched. These results give no indication of speed tuning and instead suggest that adaptation occurs at a level where an intensive code dominates. In an intensive code, the faster the stimulus, the more the neurons fire.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tactile motion aftereffect suggests an intensive code for speed in neurons sensitive to both speed and direction of motion.

Neurophysiological studies in primates have found that direction-sensitive neurons in the primary somatosensory cortex (SI) generally increase their response rate with increasing speed of object motion across the skin and show little evidence of speed tuning. We employed psychophysics to determine whether human perception of motion direction could be explained by features of such neurons and wh...

متن کامل

Tactile Motion Adaptation Reduces Perceived Speed but Shows No Evidence of Direction Sensitivity

INTRODUCTION While the directionality of tactile motion processing has been studied extensively, tactile speed processing and its relationship to direction is little-researched and poorly understood. We investigated this relationship in humans using the 'tactile speed aftereffect' (tSAE), in which the speed of motion appears slower following prolonged exposure to a moving surface. METHOD We u...

متن کامل

The stereoscopic (cyclopean) motion aftereffect is dependent upon the temporal frequency of adapting motion

This study investigated whether the stereoscopic (cyclopean) motion aftereffect (induced by adaptation to moving binocular disparity information) is dependent upon the temporal frequency or speed of adapting motion. The stereoscopic stimuli were gratings created from disparity embedded in a dynamic random-dot stereogram. Across different combinations of stereoscopic spatial frequency, temporal ...

متن کامل

Adaptation to Motion Presented with a Tactile Array

We investigated the effects of adaptation to 2 minutes of tactile apparent motion along the proximo-distal axis of the finger pad, produced with a vibrotactile array (Optacon), and developed a novel method to reveal the tactile motion aftereffect. Participants continuously reported perceived direction during adaptation to motion in the distal or proximal direction. The clarity of the direction ...

متن کامل

The reference frame of the motion aftereffect

Although eye-, headand body-movements can produce large-scale translations of the visual input on the retina, perception is notable for its spatiotemporal continuity. The visual system might achieve this by the creation of a detailed map in world coordinatesVa spatiotopic representation. We tested the coordinate system of the motion aftereffect by adapting observers to translational motion and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2016